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There are a large number of theoretical and experimental works concerned with the study 
of the stability of a rotating Couette flow [1-3]. The emphasis is on axisymmetric perturba- 
tions as being the most critical. 

The results of experiments and calculations show that when cylinders are rotating in the 
same direction, as the relative rotational velocity of the outer cylinder increases, the crit- 
ical Taylor number, for which the starting laminar regime is destroyed and Taylor vortices 
arise, increases. 

T,(~2rl/~oro) (~o, ~I are the angular rota- For ~i'~ ~ ~0r~ , the graph of the function = 2 
tional velocity of the inner and outer cylinders, ro and rl are the radii of the correspond- 
ing cylinders) becomes asymptotic. 

The flow of a rotating fluid in the presence of an infinite rigid wall for one of the 
surfaces has been less studied~ Such flows often appear in the chemical and paper industries 
with cooling of rotating mechanisms by liquid films, and so on. The appearance of perturba- 
tions in the liquid leads to a distortion of the free surface and the appearance of waves on 
it, and this affects the general picture of stability. 

The problem of the stability of a rotating flow, when one of the boundaries is free, 
while the other boundary is rigid or at infinity, is examined in [4]. The stability relative 
to small nonviscous perturbations is examined. 

An experimental investigation of the stability of a flow with a free outer surface and 
a numerical analysis are carried out in [5]. A change in the surface by wave formations is 
observed for a certain ratio of the angular velocity (rigid body rotation is examined) and 
the thickness of the film. 

The fomm of the equilibrium of the fluid located on the outer or inner surfaces of the 
solid boundary and rotating together with it as a solid body is examined in [6]. Taking in- 
to account surface tension, it was found that in the perturbed motion the velocity field re- 
mains the initial field, while the free boundary is perturbed. 

The effect of the deformation of the free surface on the convective instability of the 
horizontal layer was studied in [7]. The deformability of the surface leads to a decrease 
in stability, and this effect is greatest in the absence of surface tension [8]. 

In the present work, a numerical analysis of the linear stability of a rotating flow 
bounded by an outer cylindrical wall and having an inner free surface with radius ro is ana- 
lyzed. Three-dimensional perturbations are examined. Surface tension is neglected. 

With the flow of a dripping liquid in a vortical cell with atangential inlet,a non-flow- 
through zone arises in the region of the cell near the axis. This occurs as a result of the 
stratification of the fluid with circulation [9]. In [i0], it is shown that the flow in the 
vortical cells being examined has the properties required for creating a non-flow-through 
region with a cylindrical or torroidal shape. 

The study of the stability of the developing flows with inner boundaries is a very dif- 
ficult problem. However, it is possible to examine the problem approximately, isolating for 
the analysis certain regions of the flow. In examining the stability of the flow established, 
it is possible to fix the inner boundary or give a stationary velocity field and study its 
stability ower the entire cross section. 

Qualitative information can be obtained by studying the simplest one-dimensional prob- 
lem of the stability of a hollow vortex. 
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i. Let small perturbations of the form 

w.  == w (r) exp Ig~ (z - -  ct) -!- im~l ,  w (r) = {w,,, w~. u': i. 
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be superimposed on the main flow with vector velocity Vo = {0, v(r), u(r)} and pressure Po. 

The corresponding equations for the perturbations in a cylindrical system of coordi- 
nates r, ~, z are obtained in [ii] 
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where Wr, w~, and w z are the components of the amplitude perturbations of the velocity; 
is the axial wave number, which can vary from zero to ~; m = 0, I, 2,... is the azimuthal 
wave number; c = X + iY is the sought-after characteristic value of the problem (i.i) (for 
Y < 0, the perturbations are damped in time); v(r) and u(r) are the azimuthal and axial com- 
ponents of the unperturbed velocity; Re is Reynolds number. The prime denotes differentia- 
tion with respect to r. 

The length scale is taken as the magnitude of the gap between the surfaces bounding the 
flow and, in this case, the dimensionless radius of the inner boundary ~ will be a parameter 
determining the geometry of the channel. For $>>i, the gap becomes small; for $ + = in the 
limit, we have a flat channel; for ~ § 0, a pure tube. The instantaneous dimensionless ra- 
dius r varies in the interval [$, E + i]. 

The velocity scale is the magnitude of the axial component, averaged over the trans- 
verse cross section of the channel. TheReynolds number is constructed according to the chosen 
scales for length, velocity, and kinematic viscosity v. 

Another characteristic parameter, the Taylor number, which can be represented in the 
form ~/T =]/2/(l-~2~)u0Re , where Vo is the magnitude of the dimensionless azimuthal velocity 
of the inner boundary, is introduced. 

The boundary conditions on the outer cylinder follow from the conditions of sticking 
and impermeability 

wr(l  + ~) = w ~ ( t  + ~) = w z ( l  + ~) = 0 .  ( 1 . 2 )  

On the inner boundary, the tangential stresses are maintained at such a value that the 
axial component of the velocity equals Uo, while the azimuthal component is vo. The normal 
stress is constant. We will obtain the boundary conditions on the inner surface taking into 
account its deformability. 

Let a perturbation of the form 

r ,  = e(r) exp [ia(z  - -  ct) -]- i m p ]  

b e  i m p o s e d  o n  t h e  i n n e r  b o u n d a r y .  

T h e n ,  t h e  t a n g e n t i a l  a n d  n o r m a l  s t r e s s e s  o n  t h e  i n n e r  s u r f a c e s  r = ~ + r ,  a r e  e x p r e s s e d  
i n  t h e  f o r m  

~ e q q - - f f y w , - - - y - f f ~ e  v o - -  - - - - ~ - U o  ---7-s = O, 

W'W-- Wr + - r  + S I U O -  = O, W z ~ - i ~ w r ~ - U ; 8 = O .  

Taking into account theimpenetrability of the inner boundary and discarding second order 
terms, we obtain one more condition on the inner boundary: 

e( iac  - - i m v o / r  - -  iotuo) -[- w r = O. 
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We will eliminate the amplitude of the perturbation on the inner boundary and obtain the fol- 
lowing boundary condition at r = ~: 

, i $. q + 2w,  + - 7  Vo - -  + m~Uo + ~% 

~u o + - 7 -  - ~c 

u ' ~ - - - 7 -  -+ r m% v o - -  r =- O, 
0; ~2 0 -{ -  - -  - -  ( z e  

r 

m u  0 

~uo + --7-  -- ~c 

=o,  

(i .3) 

The problem (1.1)-(1.3) is solved by the differential passage method with joining [ii]. 

The velocity field of the laminar flow being studied is one-dimensional and depends on- 
ly on the coordinate r. For impenetrable surfaces, the stationary solution of the Navier- 
Stokes equations has the form 

v(r)--=--O, ~ = u ( r )  = A r  ~ - B  l n r  + C, ~ =v( r )  = E / r  + D. ( 1 . 4 )  

The expressions for the constants are obtained by satisfying the boundary conditions (u = 0, 
v = vz at r = ! + $, u = uo, v = vo at r = ~) and taking into account the normalization con- 
dition 

urdr = t -k- 2~: 2 
g 

B= (2+~o)(,+2~) A=Bln/~- '~  ~o)/(~ + 2~), 
~ +2~_(~ + ~ + ~ ) l n  ~ '  V--r- - 

C = B i n  (t + i ) - -  A(t  + i)2, D = [v1(1 + ~) --  ~,oil/(l + 2~),i 

The azimuthal velocity distribution is not a rigid body distribution, and the cases for 
which v1(l + $) < vo~ are examined. 

2. The spectrum of characteristic values of the problem (1.1)-(1.4) with an inner 
boundary is calculated with the use of the method of motion along the discontinuity [12]. 

The stability of the flow between coaxial cylinders is examined in [13]. Using data 
from [13] and varying the boundary conditions continuously at r = $, we pass from the con- 
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ditions of sticking and impenetrability on the inner cylinder to the given boundary condi- 
tions on the free surface (1.3) and obtain the spectrum of characteristic values of the prob- 
lem (1.1)-(1.4) for arbitrary parameters $, Re, T, a, vl, and vo. 

The critical Taylor numbers are obtainedin [13] as a function of the Reynolds number 
for a spiral flow between coaxial cylinders, if the outer cylinder is stationary. 

We will determine the effect of the free boundary on the stability picture of the flow. 
The calculations are carried out for small axial Reynolds numbers (Re = i). Further de- 
crease of Re does not effect the magnitude of the critical Taylor number, i.e., vo Re re- 
mains constant. 

Numerical calculations showed that the free inner boundary leads to a decrease in the 
critical Reynolds number, i.e., the initial laminar regime is destroyed for the smallest 
relative rotational velocities of the inner boundary. 

Taylor's number for a narrow gap for a flow between coaxial cylinders equals ~.= 41.3 
(~ = 50, m = 0, Re = i), while at the free boundary ~=23.8 (~ = 50, m= 0, Re = i). 

Decreasing $ (increasing the gap) leads to an increase in the critical Taylor numbers 
for axisymmetric perturbations, as well as for three-dimensional perturbations with m = 1 
and m = 2. 

Figure 1 shows ~T~. as a function of $. The curves 0-2 correspond to a change in 
~**(~) for perturbations with m = 0, m = i, and m = 2. For ~ = i, when the radius of the 
free surface is equal to one-half the radius of the outer cylinder, the critical Taylor num- 
bers take on the following values: r~, = 29.6(m ~ 0), FT-. = 38(m = I), and F~, = 145 
(m = 2). As can be seen from Fig. i, ~T~. for axisymmetric perturbations are smallest 
over the entire range of variation in $. A similar picture is also observed for spiral flow 
between coaxial cylinders with small Reynolds numbers: 

V ~ . = 5 6 - 5 ( m = 0 ) ,  V ~ . = 6 2 . 6 ( m = t ) ,  ~ # ~ . = 7 7 ( m = 2 ) .  

I n  t h i s  c a s e  a s  w e l l ,  t h e  c r i t i c a l  T a y l o r  n u m b e r s  o f  a x i s y m m e t r i c  p e r t u r b a t i o n s  a r e  s m a l l e s t ,  
i . e , ,  t h e  m o s t  c r i t i c a l  p e r t u r b a t i o n s  a r e  p e r t u r b a t i o n s  w i t h  m = 0 .  The c r i t i c a l  wave num-  
b e r s  a , ,  when ~ i s  d e c r e a s e d ,  r e m a i n  c o n s t a n t  ( a ,  = 2) f o r  a x i s y m m e t r i c  p e r t u r b a t i o n s .  I f  
m ~ 0 ,  a ,  i n c r e a s e s  w i t h  an  i n c r e a s e  i n  t h e  gap b e t w e e n  t h e  s u r f a c e s :  

~ , _ ~ 2 . 6  ~r  m = l ,  ~ = l ,  a . = 5 . 8 5  ~r m = 2 ,  ~ = I .  

F i g u r e  2 shows Y a s  a f u n c t i o n  o f  t h e  wave n u m b e r  a w i t h  t h e  c r i t i c a l  T a y l o r  n u m b e r  c o r -  
r e s p o n d i n g  t o  e a c h  a z i m u t h a l  n u m b e r  m. The d e p e n d e n c e  o f  t h e  d e c r e m e n t  o f  t h e  p e r t u r b a t i o n s  
on  t h e  wave n u m b e r  i s  g i v e n  f o r  ~ = 1 .  The c u r v e s  0 - 2  c h a r a c t e r i z e  t h e  c h a n g e s  i n  Y(a )  f o r  
p e r t u r b a t i o n s  w i t h  m = 0,  m = 1 ,  and  m = 2.  I t  i s  e v i d e n t  f rom F i g .  2 t h a t  t h e  f u n c t i o n  
Y(a )  f o r  m = 0 h a s  a s i n g l e  maximum a t  a = 2,  w h i l e  Y(a)  f o r  m = 1 h a s  a maximum a t  5 = 2 . 6 .  

The c u r v e  c o r r e s p o n d i n g  t o  t h e  c h a n g e  i n  Y(a )  f o r  p e r t u r b a t i o n s  w i t h  m = 2 h a s  two m a x i -  
ma a t  a = 3 . 1 6  and  5 . 8 5 .  I f  T a y l o r ' s  n u m b e r  i s  i n c r e a s e d ,  t h e n  t h e  f i r s t  maximum on  c u r v e  2 
a t  5 = 3 . 1 6  s h i f t s  t o w a r d  l o n g e r  w a v e l e n g t h s ,  r e m a i n i n g  n e g a t i v e  a t  t h e  same t i m e .  The s e c -  
ond  maximum on  c u r v e  2 (a = 5.85) moves  i n t o  t h e  r e g i o n  o f  p o s i t i v e  v a l u e s  and  i s  r e s p o n s i -  
b l e  f o r  t h e  i n s t a b i l i t y  o f  t h e  a z i m u t h a l  mode w i t h  m = 2.  

F o r  a l l  t y p e s  o f  p e r t u r b a t i o n s  e x a m i n e d  (m = 0,  m = 1,  and  m = 2 ) ,  a i n c r e a s e s  w i t h  a n  
i n c r e a s e  i n  t h e  T a y l o r  n u m b e r .  

L e t  u s  e s t i m a t e  t h e  e f f e c t  o f  t h e  r o t a t i o n  o f  t h e  o u t e r  c y l i n d e r  on  t h e  s t a b i l i t y  o f  
t h e  f l o w .  We w i l l  e x a m i n e  t h e  c a s e  $ = 50 ,  when t h e  gap i s  s m a l l ,  a nd  $ = 1 ,  when  t h e  r a -  
d i u s  o f  t h e  i n n e r  s u r f a c e  i s  o n e - h a l f  t h e  o u t e r  r a d i u s .  

The r e s u l t s  o f  t h e  c a l c u l a t i o n s  show t h a t  s m a l l  r e l a t i v e  v e l o c i t i e s  o f  r o t a t i o n  o f  t h e  
o u t e r  c y l i n d e r  do n o t  h a v e  a s i g n i f i c a n t  e f f e c t  on  t h e  m a g n i t u d e  o f  t h e  c r i t i c a l  T a y l o r  
n u m b e r  and  t h e  wave n u m b e r s .  

L e t  u s  i n t r o d u c e  t h e  d i m e n s i o n l e s s  c o m p l e x  v l ( 1  + ~ ) / v o ~  and  g e n e r a l i z e  t h e  r e s u l t s  o f  
t h e  c a l c u l a t i o n s  f o r  ~ = 50 and  ~ = 1 .  

A weak  c h a n g e  i n  T ,  and  a ,  i s  o b s e r v e d  up to  ~ ( i ~ - ~ ) / ~ 0 . 5 .  

F u r t h e r  i n c r e a s e  i n  t h e  p a r a m e t e r  v ~ ( 1  + $ ) / v o ~  l e a d s  t o  a n  i n c r e a s e  i n  5 ,  f o r  t h r e e -  
d i m e n s i o n a l  p e r t u r b a t i o n s  (m = 1 ,  m = 2 ) ,  and  f o r  a x i s y m m e t r i c  p e r t u r b a t i o n s  (m = 0) 5 ,  r e -  
m a i n s  e q u a l  t o  2.  
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The functions Y(a) have the same character as for v1(l + ~)/vo$ = 0, i.e., in the ab- 
sence of rotation of the outer cylinder, with the only difference that for perturbations 
with m = 1 and m = 2 the maxima on the Y(a) curves are shifted toward the short wavelength 
region. 

The critical Taylor numbers increase with an increase in the relative rotational veloc- 
ity of the outer cylinder for perturbations with m = 0, m = i, and m = 2. 

Figure 3 shows the change in ~. as a function of the parameter v1(i-~ ~)/Vo~. The 
behavior of the curves 0-2 corresponds to the change in the critical Taylor numbers VT, 
([v1(l-~)/vo~]) for perturbations with m = 0, m = i, and m = 2 in the case of a wide gap 
(~ = I). Curve 3 reflects the change in VT,, if the gap is small (~ = 50, m = 0). 

The nature of the curves in Fig. 3 suggest that the axisymmetric perturbations m = 0 
are the most critical over the entire range of variation of the parameter v1(l + ~)/vo~. 
These perturbations are localized near the free surface, and the phase velocities are of the 
order of the velocity of the axial flow. The critical wave numbers a, remain constant along 
the curve 0(a, = 2). 

Perturbations with azimuthal number m = 2 are also localized near the free surface, 
i.e., they are "near-wall" perturbations, while perturbations with m = 1 have a near-axial 
character and are localized at the center of the channel. Curves 0-3 (Fig. 3) become asymp- 
totic as the parameter v~(l + ~)/Vo~ approaches unity. 

For comparison, Fig. 3 shows the results of numerical calculations of the critical Tay- 
lor numbers as a function of the relative rotational velocities of the outer and inner bound- 
aries for the flow between coaxial cylinders. Curve 4 reflects the change in I/T--, with in- 
cre_asing parameter v1(l + ~)/Vo~ in the case of a narrow gap (~ = 50). Along the curve 5, 
I/T, changes for axisymmetric perturbations m = 0, when the gap between the cylinders 
equals the radius of the inner cylinder (~ = i). 

Perturbations responsible for the instability of the flow are, in this case (m = 0), lo- 
ca!ized also near the inner boundary. As ~1(lq-. ~0~-+i , the dependence of ~T~ on this 
parameter along curves 4 and 5 becomes asymptotic. The results of the calculations agree 
with the data in [3] with good accuracy. 

In order to study the stability of the flow completely with increasing rotation of the 
outer cylinder ~1(iq- ~)/~0~i, it is sufficient to follow the change in the local maxima 
of the most critical characteristic values. 

Figure 4 shows the change in the maxima of Y(a) for the three most critical azimuthal 
modes (m = 0, m = !, and m = 2) with increasing vl/vo (~ = i). Curves 0--2 correspond to 
m = 0, m = I, and m = 2. Maxima of Y(a) for these perturbations with critical Taylor num- 
bers and a definite, for each type of perturbation, relative rotational velocity of the outer 
cylinder v:/vo have a damping decrement Y = 0. As the parameter v~/vo increases with con- 
stant Taylor number ~T ~:= ~T~, max}~(~) moves sharply into the region of negative Y values. 
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Along curves 0 and i, max Y(~) varies for perturbations with m = 0 and m : i, respectively 
(]/T = 320 for m = O, ]/T = 665 for m = i). The wave numbers, for which Y(a) attains a 
maximum value, increase with increasing vl/vo. 

The behavior__ of curve 2 reflects the change in the maximum of Y(a) for perturbations 
with m = 2 (]/T = 890). For such perturbations, a certain nonmonotonic behavior is ob- 
served in the behavior of Y(~) for vl/vo > 0.5, but this has no effect on the general pic- 
ture of the instability, since the corresponding max Y(u) lies in the deeply negative region 
up to vl/vo = 2. Along curve 2, and the wave number is observed to increase, i.e., max Y(~) 
shifts with increasing v~/vo toward the short wavelength region. 

Thus, a numerical analysis of the flow with free inner boundaries has shown that the 
presence of a free cylindrical surface leads to a decrease in the stability of the rotating 
flow for wide and narrow gaps. 

The rotation of the outer cylinder has a stabilizing effect on the stability of the 
flow. This effect is also observed in the case of a flow between coaxial cylinders for the 
types of perturbations examined above. The critical Taylor numbers are smallest for axisym- 
metric perturbations with arbitrary values of ~, u1(i ~-~)/~i and small Reynolds numbers. 

The authors are grateful to V. N. Shtern and M. A. Gol'dshtik for their attention to 
this work and for discussing the results. 
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